	Term 1	Term 2	Term 3
Unit Title	- Algorithms - Networks - Matrices \& Transformations - Matrices \& their Inverses - Introduction to Complex Numbers - Complex Numbers \& Geometry - Bivariate Data - Regression Lines	- Critical Path Analysis - Linear Programming - Regression Lines Continued - Discrete Random Variables - Discrete Probability Distributions - Chi-Squared Tests - Roots of Polynomials - Vectors \& 3D Space - Sequences \& Series	- Revision for AS Mock Exams - AS Mock Exams: Core Pure (1hr 15mins) Statistics a (1 hr 15mins) Modelling with Algorithms (1hr 15mins) Year 13 Course: - Vectors 1 - Vectors 2 - Matrices
Approximate Number of Lessons	28 Double Lessons	27 Double Lessons	22 Double Lessons
Curriculum Content	- Learn what an algorithm and be apply these in a variety of forms. Find out how to analyse the complexity of given algorithms. Learn and be able to apply sorting algorithms. - An introduction to graph theory and modelling with graphs \& networks. - Learn what a matrix is and how these can be used to transform shapes. - Learn how to find determinants and inverses of 2×2 matrices and 3×3 (only using a calculator). Applying these to solve linear simultaneous equations. - Learn what a complex number is and be able to $+/-/ x$ and \div complex numbers. Solve all polynomial	- Learn how to use critical path analysis to interpret outcomes and analyse float, resourcing \& scheduling. - Learn how to use linear programming to solve discrete problems. Use of graphs, the Simplex method and reformulating network problems as LPs. - Learn how to find and use appropriate regression lines to solve problems. - Interpret probability functions given algebraically or in tables. Calculate $\mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$ and learn how to find combinations of random variables. - Learn how to recognise Binomial, Poisson, Uniform and Geometric distributions. Calculate probabilities, expected values and variances. - Learn how to do chi-squared tests for contingency tables and association and for goodness of fit tests.	- Revision of all work covered this academic year. - Vector equations of lines in 2 and 3D. Finding points of intersections between lines and planes if applicable and interpreting geometrically. - Learning how to find a vector product and using this to find distances. - Learn how to find the determinant and inverse of a 3×3 matrix without a calculator. Solving simultaneous linear equations with 3 unknowns using matrices.

	equations finding real and complex roots. Illustrate roots on an Argand diagram. - Learn how to write complex numbers in modulus-argument form and x / \div numbers in this form. Learn how to draw loci of given constraints in the complex plane. - Learn how to find Pearson's product moment correlation coefficient and Spearman's rank correlation coefficient \& know how to identify which is more appropriate. Use of hypotheses tests for identifying correlation. - Finding and using regression lines.	- Learn the relationships between roots and coefficients of quadratic, cubic \& quartic equations. Form new equations whose roots are related (linear) to the roots of a given equation. - Learn how to find the scalar product of two vectors and use this to find angles. Find the equation of a plane and angle between two planes. - Learn the use of standard series and the method of differences to find sums of series. Proof by induction.	
Links to prior learning	- Basic algebra. - No prior knowledge required. - GCSE transformations and good algebraic skills. - Should be confident with previous matrices work and be able to solve linear simultaneous equations. - Use of the quadratic formula to solve a quadratic equation. - Be confident working with complex numbers. - Familiar with scatter diagrams and the idea of correlation (introduced in AS Maths).	- Networks \& graphs from previous term. - Plot straight line graphs, form inequalities and solve linear simultaneous equations. - Regression lines from last half term. - Understand what a probability distribution is and how to find the mean and variance of a data set from AS Maths. - Binomial Distribution from AS Maths. - Happy with carrying out hypothesis tests. - Understand roots of polynomials and factor theorem from AS maths and complex roots from the first term. - Vectors from AS Maths. Matrices from term 1.	- Previous 2 terms work. - Vectors from AS and a-Level Maths and AS Further Maths. - Vectors covered so far iin Maths and Further Maths. - Determinant \& inverse of a 2×2 matrix. Know the ways in which 3 planes can intersect in 3D space.

		- Sequences from GCSE and nth terms.	
Cultural Capital Opportunities	- Visit Bletchley Park - Film: The Imitation Game - Book: Things to Make and Do in the Fourth Dimension by Matt Parker. (Mrs Smith has a copy you can borrow).	- Book: The Man Who Knew Infinity by Robert Kanigel. - Film: The Man Who Knew Infinity - Videos: Numberphile Best Videos	- AMSP Podcasts: FMSP Podcasts
Assessment Focus	- Private Study: Topic quiz/tests - Chapter Assessments	- Private Study: Topic quiz/tests - Chapter Assessments	- Private Study: Topic quiz/tests - Chapter Assessments - Mock Exams

Mrs Mantle (2.5 Hours)					Mrs Smith (2.5 Hours)							
					Autumn Term	m Year 12						
Unit	Chapter	Topic	Weeks	Integral Link				Unit	Chapter	Topic	Weeks	Integral Link
Algorithms	Section 1	Algorithms	3	Algorithms				Core	1	Matrices \& Transformations	7	Matrices and transformations
Algorithms	Section 2	Networks	4	Modelling with graphs \& networks				Core	6	Matrices \& Their Inverses	3	Matrices and their inverses
				Network Algorithms				Statistics	4	Bivariate Data	3	ivariate data
				Network Flows				Statistics	5	Regression Lines	1	ivariate data 3: Regression
Core	2	Introduction to Complex Numbers	3	Complex numbers								
Core	5	Complex Numbers \& Geometry	4	Complex numbers and geometry								
					Spring Term	Year 12						
Algorithms	Section 3	Critical Path Analysis Continued	3	Critical Path Analysis								
Core	3	Roots of Polynomials	3	Roots of polynomials				Statistics	5	Regression Lines Continued	1	Ivariate data 3: Regre
Algorithms	Section 4	Linear Programming	5	Linear Programming				Statistics	2	Discrete Random Variables	2	Discrete random variables
				The Simplex Method				Statistics	3	Discrete Probability Distributions	4	Discrete probability distributions
				Reformulating Problems				Statistics	6	Chi-Squared Tests	3	Chi-squared tests
Core	7	Vectors \& 3D Space	2	Vectors and 3-D space				Core	4	Sequences \& Series	3	Sequences and series
					Summer Term	m Year 12						
		Core Revision		Core Revision	Revision and M	Mock Exams						
		Modelling With Algorithms Revision		Algorithms Revision						Statistics Revision		
					Start Year 13	3 Course						
Core	1	Vectors 1	3	Vectors				Core	2	Matrices	4	Matrices
Core	11	Vectors 2	2	Further vectors								

