
 practice.

．．．or BODMAS．Use the correct order
of operations；take care when using a
calculator．
－Brackets
－Indices（or pOwers）
－Addition and Subtraction
Types of number \qquad
Integer：a＂whole＂number
Factors；the divisors of an integer \rightarrow Factors of 12 are $1,2,3,4,6,12$ Multiples；a＂times table＂for an integer（will continue indefinitely） $\xrightarrow[\text { Prime number：an integer which has }]{ }$ exactly two factors（ 1 and the number itself）．Note： 1 is not a prime number． HCF，LCM \qquad Highest Common Factor（HCF） $\rightarrow \quad$ Factors of 6 are 1，2，3， 6 HCF of 6 and 9 is 3
Lowest Common Multiple（LCM）
\rightarrow Multiples of 6 are $6,12,18$
\rightarrow Multiples of 6 are $6,12,18,24$ ，
LCM of 6 and 9 is 18
Prime factors \qquad Nu
Write a number as a product of its rime factors；use indices for $\xrightarrow{\text { repeated factors：}}$
Powers and roots NE，NT Special indices：for any value

$$
a^{0}=1
$$ N6，NT

$$
\begin{array}{cc}
& a^{-n}=\frac{1}{a^{n}} \\
\Rightarrow \quad 3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}
\end{array}
$$

Calculating with fractions N8 Adding or subtracting fractions；use a common denominator．．．
$\rightarrow \quad \frac{4}{5}-\frac{1}{3}=\frac{12}{15}-\frac{5}{15}=\frac{7}{15}$ Multiplying fractions；multiply
$\rightarrow \quad \frac{4}{7} \times \frac{2}{3}=\frac{8}{21}$
Dividing fractions；＂flip＂the second fraction，then multiply．．．
$\Rightarrow \quad \frac{2}{7} \div \frac{5}{6}=\frac{2}{7} \times \frac{6}{5}=\frac{12}{35}$
Fractions，decimals $\quad \mathrm{N} 10$ 5 $\overrightarrow{\overline{8}}=5 \div 8=0.625$ Use place values to change decimals fractions．Simplify where possible．
$\rightarrow \quad 0.45=\frac{45}{100}=\frac{9}{20}$
Learn the most frequently used ones：

$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{4}$
0.5	0.25	0.1	0.2	0.75

Surds N8
factor of the number：
$\Rightarrow \sqrt{80}=\sqrt{16 \times 5}=4 \sqrt{5}$
Standard form \qquad Standard form numbers are of the
and n is an integer．

Standard units
1 tonne $=1000$ kilograms
1 kilogram $=1000$ grams
1 kilometre $=1000$ metres
1 metre $=100$ centimetres
$=1000$ millimetres
1 centimetre $=10$ millimetre
－
1 hour $=60$ minutes $=3600$ seconds 1 minute $=60$ seconds

Rounding

Truncate the number，then use
Truncate the number，then use a
＂decider digit＂to round up or down
decider digit to round up or down．
$\rightarrow \quad \begin{aligned} & 162.3681 \text { to } 2 \mathrm{dp} \text { ；} \\ & 162.36 / 81=162.37 \text { to }\end{aligned}$
Significant figures：use the first non－
$\xrightarrow{\text { zero digit．}} \quad 162.3681$ to 2 sf ；
$\rightarrow 16 \mid 2.3681=160$ to 2 sf
$\rightarrow \quad \begin{array}{r}0.007039 \text { to 3 sf；} \\ \quad 0.00703 \mid 9=0.007\end{array}$
0.00703 ｜ $9=0.00704$ to 3 sf

Error intervals
N15
round to range of numb e
round to a given value：
$\Rightarrow x=5.83$（ 2 decimal places）
$\Rightarrow x=5.83$（ 2 decimal places）
$5.825 \leq x<5.835$
$\rightarrow y=46$（2 significant figures）
Note use of \leq and $<$ ，and that the last
significant figure of each is 5
Algebraic notation

$$
\begin{gathered}
a b=a \times b \\
3 y=y+y+y \\
a^{2}=a \times a \\
a^{3}=a \times a \times a \\
a^{2} b=a \times a \times b \\
\frac{a}{b}=a \div b
\end{gathered}
$$

Equations and identities A3
An equation is true for some
particular value of x
$2 x+1=7$ is true if $x=3$
．．．but an identity is true for every value of x
$\xrightarrow[\text {（note the use of }]{\rightarrow}(x+a)^{2} \equiv x^{2}+2 a x+a^{2}$ （note the use of the symbol \equiv ）
Laws of indices
For any value a ：

$$
\begin{gathered}
a^{x} \times a^{a}=a^{x+y} \\
\frac{a^{x}}{a^{y}}=a^{x-y} \\
\left(a^{x}\right)^{y}=a^{x y}
\end{gathered}
$$

$\rightarrow\left(\frac{2 p q^{4}}{p^{3} q}\right)^{3}=\frac{8 p^{3} q^{12}}{p^{9} q^{3}}=\frac{8 q^{9}}{p^{6}}$ or $8 q^{9} p^{-6}$
13

Equation of straight line $y=m x+c$
m is the gradient； c is the y intercept：
\rightarrow Find the equation of the line
that joins $(0,3)$ to $(2,11)$
Find its gradient
Find its gradient．．．$\frac{11-3}{2-0}=\frac{8}{2}=$
$\frac{11-0}{2-0}=\frac{1}{2}$
\ldots and its y intercept．．．．
Passes through $(0,3)$ ，so $c=3$
Equation is $y=4 x+3$
Parallel lines：gradients are equal； $\rightarrow y=2 x+3$ and $y=2 x-5$ both have gradient 2 so are parallel． Expanding brackets
$p(q+r)=p q+p r$
$\Rightarrow \quad 5(x-2 y)=5 x-10 y$
$\Rightarrow(x+a)(x+b)=x^{2}+a x+b x+a b$
$\rightarrow \quad$
$\rightarrow \begin{aligned} & (2 x-3)(x+5)\end{aligned}$
$=2 x^{2}-3 x+10 x-15$
$=2 x^{2}+7 x-15$
Reverse of expanding is factorising－ putting an expression into brackets．
Quadratics A18
Solve a quadratic by factorising． $\rightarrow \quad$ Solve $x^{2}-8 x+15=0$
Put into brackets（taking care with any negative numbers）．．．
$(x-3)(x-5)=0$
．．．then either $x-3=0$ or $x-5=0$
so that $x=3$ or $x=5$ ．
Difference of two squares A4

Simultaneous equations A19
\rightarrow Solve $\left\{\begin{array}{c}2 x+3 y=11 \\ 3 x-5 y=7\end{array}\right.$
Multiply to match a term in x or y $\int 10 x+15 y=55$ $\left\{\begin{array}{l}9 x-15 y=21\end{array}\right.$ Add or subtract to cancel．．．． Finally，substitute and solve．．． Rearrange a formula
Rearrange a formula
The subject of A5 on its own．Use rules that＂balance＂ on its own．Use rules that balance
the formula to change its subject \rightarrow Make x the subject of $2 x+3 y=z$ Here，subtract $3 y$ from both sides．．． $2 x=z-3 y$
．．then divide both sides by 2

$$
x=\frac{z-3 y}{2}
$$

$y=x^{2}$

Trigonometry．
Trigonometry．
Links two sides and one angle．
SOM \mid CAB \mid TOA

$\sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}} \quad \cos \theta=\frac{\mathrm{adj}}{\mathrm{hyp}} \quad \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$ Use＂2ndF＂or＂SHIFT＂key to find a
missing angle

Areas and volumes

Area of triangle $=\frac{1}{2} \times$ base \times height \quad Volume of cuboid $=$ length \times width \times height
The longest side of any right angled triangle is the hypotenuse；check that your
answer is consistent with this．

Special values of sin，cos，tan Learn（or be able to find without a calculator）．．

θ°	$\sin \theta^{\circ}$	$\cos \theta^{\circ}$	$\tan \theta^{\circ}$
0	0	1	1

0	0	1	1		
30	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$		
45	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1		
60	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$		
90	1	0			

Sequences
A24，A25
Triangular numbers：
Pst nd Ord 4 th 5 th 1 3 6 10 15 Square numbers $\left(n^{2}=n \times n\right)$ ： 1^{2} 2^{2} 3^{2} 4^{2} 5^{2} 1 4 9 16 25 Cube numbers $\left(n^{3}=n \times n \times n\right):$ 1^{3} 2^{3} 3^{3} 4^{3} 5^{3} 1 8 27 64 125 nth term of an arithmetic（linear）

nth term of an arithmetic（linear） sequence is $a n+d$ $\rightarrow n$th term of $5,8,11,14, \ldots$ is first term is $3 \times 1+2=5$ ） Geometric sequence；multiply each term by a constant ratio Fibonacci sequence；make the next term by adding the previous two ．．． $\rightarrow 2,4,6,10,16,26,42$ ，
\qquad $p=\frac{n \text {（equally likely favourable outcomes）}}{n}$ $p=\frac{n(\text { equally likely favourable outcomes）}}{\text { nequally likely possible outcomes）}}$ impossible
$p=0$ $\begin{array}{ll}p=0 & \text { impossible } \\ 0<p<0.5 & \text { unlikely }\end{array}$ $\begin{array}{ll}0<p<0.5 & \text { unlikely } \\ p=0.5 & \text { evens } \\ 0.5<p<1 & \text { likely }\end{array}$ $\begin{array}{ll}0.5<p<1 & \begin{array}{l}\text { likely } \\ p=1\end{array} \\ \text { certain }\end{array}$
Probability rules \qquad PB，P9
Multiply for independent events
$\rightarrow \mathrm{P}$（ 6 on dice and H on coin） $\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}$
Add for mutually exclusive events $\rightarrow \mathrm{P}(5$ or 6 on dice $)$

Apply these rules to tree diagrams．
Parts of a circle

Area of sector $=\frac{\theta}{360^{\circ}} \times \pi \times r^{2} \quad$ Volume of prism $=$ area of cross section \times length Transformations

Enlargement G7，G8

Reflection	Rotation	Enlargement
－Line of reflection	－Centre of rotation	\bullet Centre of enlargement
Translation	\bullet Angle of rotation	\bullet Scale factor（if SF＜1 the
\bullet－Vector	\bullet Clockwise or anticlockwise	Shape will get smaller）．

Interior angles in a
Use this for the interior Exterior angles
triangle total 180°

$$
\left.\begin{array}{ll}
9, & 1 \\
2 & 1 \\
2 & 1
\end{array}\right\rangle
$$

Alternate angles Corresponding anglesAngle facts

RS
Division using ratio \qquad
\rightarrow Use a ratio for unequal sharing
\Rightarrow Divide $£ 480$ in the ratio $7: 5$
$7+5=12$ ，then $£ 480 \div 12=£ 40$ $7+5=12$ ，then $£ 480 \div 12=£ 40$

£200＝£480 \downarrow

Ratio and fractions
 Rs

Link between ratios and fraction
\rightarrow Boys to girls in ratio $2: 3$
$\frac{5}{5}$ are boys，$\frac{3}{5}$ are girls．
Percentages
y percent of $x=\frac{y}{100} \times x$
\rightarrow Increase $£ 58$ by 26% ．
$\frac{26}{100} \times £ 58=£ 15.08$
100
$£ 58+£ 15.08=£ 73.08$
y as a percentage of $x=\frac{y}{x} \times 100 \%$
\rightarrow The population of a town increases
Find the percentage increase

$$
\begin{gathered}
\frac{110}{3500} \times 100 \%=32 \% \\
=\underline{\text { increase }}
\end{gathered}
$$

Learn the most frequently used ones：

$$
\begin{array}{c|c|c|c|}
\hline \frac{1}{2} & \frac{1}{4} & \frac{1}{10} & \frac{1}{5} \\
\hline
\end{array}
$$

$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{100}$
50%	25%	10%	20%	19

Speed，distance，time R11
Speed $=\frac{\text { distance }}{\text { time }}$
\rightarrow A car travels 90 miles in 1 hour， 0 minutes．Find its average speed 90 miles $\div 1.5$ hours $=\mathbf{6 0} \mathbf{~ m p h}$
\qquad
Mode：most frequently occurring Median：put the data in numerical
order，then choose the middle one Mean $=\frac{\text { total of items of data }}{\text { number of items of data }}$

ositive correlation $\xrightarrow{\text { correlation }}$

54

0 RB Sb
5

$$
\text { Note: fraction }=\frac{\text { increase }}{\text { original }}
$$

$$
\begin{aligned}
& \text { Note: fraction } \\
& \text { Learn the most frequently } \\
& \begin{array}{|l|l|l|}
\hline 1
\end{array}
\end{aligned}
$$

90 miles $\div 1.5$ hours $=60 \mathrm{~B}$
都 ， － 9

[^0]者

俋
者
$$
0^{\circ}
$$

Powers and roots $\quad N 6$,	
Special indices: for any value a :	
a^{0}	$=1$
a^{-n}	$=1$

$$
\Rightarrow \quad 3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}
$$

Standard form N10
value of x
N, N7

$$
a^{-n}=\frac{1}{a^{n}}
$$

$$
a^{\left(\frac{p}{q}\right)}=\sqrt[q]{a^{p}}
$$

$$
\Rightarrow \quad 8^{\left(\frac{2}{3}\right)}=\sqrt[3]{8^{2}}=4
$$

Surds N8

Look for the biggest square number
$\xrightarrow{\mathbf{8 0}}=\sqrt{16 \times 5}=4 \sqrt{5}$
Rationalise the denominator N8 Multiply the numerator and
denominator by an expression that
makes the denominator an integer:
$\Rightarrow \quad \frac{4}{\sqrt{7}}=\frac{4 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}}=\frac{4 \sqrt{7}}{7}$
$\Rightarrow \quad \frac{2}{4+\sqrt{5}}$
$=\frac{2}{4+\sqrt{5}} \times \frac{4-\sqrt{5}}{4-\sqrt{5}}=\frac{2(4-\sqrt{5})}{11}$ N9
Standard form numbers are of the orm $a \times 10^{n}$, where $1 \leq a<10$ and
is an integer.
Recurring decimals Make a recurring decimal a fraction:
$\xrightarrow{\rightarrow} \quad \begin{array}{r}n=0.236 \\ \text { two digits are in the rect }\end{array}$ pattern, so multiply by 100)
$100 n=23.6$)
(this is the same as $23.6 \dot{3}$)

$n=\frac{23.4}{99}=\frac{244}{990}=\frac{13}{55}$
Error intervals \qquad
Error intervals N15
Find the range of number
$\rightarrow \begin{gathered}x=5.83 \text { (} 2 \text { decimal places) } \\ 5.825 \leq x<5.835\end{gathered}$
$\rightarrow y=46$ (2 significant figures)
$4.5 \leq y<46.5$
Note use of \leq and $<$, and that the last
equis
Equations and identities particular value of x
$\rightarrow 2 x+1=7$ is true if $x=3$
..but an identity is true for every
$\xrightarrow[\text { (note the use of the symbol } \equiv \text {) }]{\rightarrow(x+a)^{2} \equiv x^{2}+2 a x+a^{2}}$

Laws of indices
For any value a :
$\Rightarrow\left(\frac{2 p q^{4}}{p^{3} q}\right)^{3}=\frac{8 p^{3} q^{12}}{p^{9} q^{3}}=\frac{8 q^{9}}{p^{6}}$ or $8 q^{9} p^{-6}$
Difference of two squares A4
$a^{2}-b^{2}=(a+b)(a-b)$
$x^{2}-25=(x+5)(x-5)$
A4

$$
\begin{aligned}
& a^{y} \\
& \left(a^{x}\right)^{y}
\end{aligned}=a^{x y}
$$

Rearrange a formula
The subject of a formula is the term
The subject of a formula a
on its own. Rearrange to
\rightarrow Make x the subject of
$2 x+a y=y-b x$
$2 x+b x=y-a y$
$x(2+b)=y-a y$
$x=\frac{y-a y}{2+b}$
Functions

Quadratics A11, A18 If a quadratic equation cannot be factorised, use the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

\Rightarrow Solve $2 x^{2}+\begin{gathered}2 a \\ x-7\end{gathered}=0$
$x=\frac{-3-\sqrt{9-(-56)}}{2 \times 2}=-2.73$
or $x=\frac{-3+\sqrt{9-(-56)}}{2 \times 2}=1.23$
Combining functions:

$\mathrm{fg}(x)=x^{2}+3$
$\mathrm{gf}(x)=(x+3)^{2}$
\rightarrow The inverse of f is f^{-1}
\Rightarrow If $\mathrm{f}(x)=2 x+5$ then
$y=\mathrm{m} x+\mathrm{c}$
$(x)=\frac{x}{2}$
$y=\mathrm{m} x+\mathrm{c} \quad$ A9
Equation of straight line $y=m x+c$
m is the gradient; c is the y intercept:
\Rightarrow is the gradient; c is the y intercept: that joins $(0,3)$ to $(2,11)$ Find its gradient....
$\frac{1-3}{2-0}=\frac{8}{2}=4$
...and its y intercept... Passes through (0,3 , so $\mathrm{c}=3$
Passes through $(0,3)$, so
Equation is $y=4 x+3$
Parallel lines: gradients are equal; perpendicular lines: gradients are "negative reciprocals".
$\Rightarrow y=2 x+3$ and $y=2 x-5$ are $y=2 x+3$ and $y=2 x-5$ are
parallel to each other; $y=2 x+3$ and $y=-\frac{1}{2} x+3$ are perpendicular Transformations of curves A13 Starting with the curve $y=\mathrm{f}(x)$: Translate $\binom{0}{a}$ for $y=\mathrm{f}(x)+a$
Translate $\binom{-a}{0}$ for $y=\mathrm{f}(x+a)$
Reflect in x axis for $y=-\mathrm{f}(x)$
Reflect in x axis for $y=-\mathrm{f}(x)$
Reflect y axis for $y=\mathrm{f}(-x)$
Velocity - time graph
Crodien-A15
Gradient = acceleration (you may
need to draw a tangent to the curve at need to draw a tangent to the curve at Area under curve = distance travelled.

[^0]: \qquad路

