	Term 1				
Unit Title	Compression	Networks and security	Systems software	Ethical, Legal, Cultural and	Search and sort algorithms
Approximate	1	14	3	7	6
Number of Lessons					
Curriculum Content	Students will be	Students will study how networks are	Students will learn	Students will learn about the	Students will study how to
Note: Where	able to describe	created and their uses. They will also	about the software	positive and negative impacts of	read and write the standard
appropriate, lessons	types of	learn how to protect computer	needed to manage	technology as well as the laws	search and sort algorithms.
will also include	compression and	systems from attack.	and run a computer.	that govern its use.	
programming tasks	how they can be				
	used on data				
Links to prior	Units of storage,	Systems architecture	System architecture	Networks and security	Strong links to writing and
learning	Data storage	Memory and storage	Memory and storage		understanding algorithms
		Programs	Networks and security		
Cultural Capital	Watch Wreck it	Watch Wreck it Ralph: Breaks the	Improve your	Watch/ read Ready Player One,	Take part in the Cyber
Opportunities	Ralph: Breaks the	internet, The imitation game	computer's	Watch The Circle, The Social	Discovery challenge:
	internet	Take part in the Cyber Discovery	performance by	network	https://joincyberdiscovery.co
		challenge:	running a disk clean	Read articles from BBC	<u>m/</u>
		https://joincyberdiscovery.com/	up and	technology: <u>Technology - BBC</u>	Learn a new programming
		Visit Computing history centre in	defragmentation.	News	language
		Cambridge or the National Museum of			
		computing at Bletchley Park			
Assessment Focus	One 60 mark, 1 hour assessment focusing on all topics up to this point including year 9 and 10 split into component 1 and component 2				
	One full mock consisting of one paper on Computer systems and a second paper on Algorithms and programming				
Name of Knowledge	1.2 Units of	1.3.1 Networks and topologies	1.5 Systems Software	1.6 Ethical, Legal, Cultural and	2.1 Algorithms
Organiser	storage and	1.3.2 Wired and wireless networks,		Environmental impacts	
	compression	Protocols and Layers			
		1.4 Network Security			

Year 11 Curriculum Overview Computer Science 2023-24

	Term 2					
Unit Title	Algorithms and	Systems architecture	Memory and storage	Boolean logic revision	Networks and security	Ethical, Legal, Cultural
	programming revision	revision	revision		revision	and Environmental
Approx Number	<u>с</u>	2	5	2	2	
of Lessons	5	2	5	2	5	2
Curriculum	Students will recap	Students will recap	Students will recap how data	Students will recap the	Students will recap	Students will recap the
Content	how to read and write	the CPU and how it	is stored by computers. This	rules of logic gates and	how networks are	positive and negative
Note: Where	algorithms. Physical	is used with other	will include the devices data	how to apply them in	created and their uses.	impacts of technology
appropriate,	computing will be	components of a	is stored on and how each	truth tables	They will also learn	as well as the laws that
lessons will also	used to help students	computer.	type of data can be		how to protect	govern its use.
include	engage with the tasks		represented in binary.		computer systems	
programming					from attack.	
tasks						
Links to prior	Programming	Systems architecture	Systems architecture	Previous learning on	Systems architecture	Networks and security
learning	techniques	Memory and storage	Memory and storage	Boolean logic and	Memory and storage	ELCE impacts
	Algorithms	Programs	Programs	Boolean operators	Programs	
	Boolean logic		Boolean logic			
			Basic numeracy skills			
Cultural Capital	Take part in the Cyber	Visit Computing	Watch The Emoji movie, The	Visit Computing history	Take part in the Cyber	Watch/ read Ready
Opportunities	Discovery challenge:	history centre in	Martian, Tron, Calculating	centre in Cambridge or	Discovery challenge	Player One, Watch The
	https://joincyberdisco	Cambridge or the	Ada	the National museum of	Watch Wreck it Ralph:	Circle, The Social
	<u>very.com/</u>	National museum of	Visit Computing history	computing at Bletchley	Breaks the internet,	network
	Learn a new	computing at	centre in Cambridge or the	park	The imitation game	Read articles from BBC
	programming	Bletchley park	National museum of	Creating logic circuits on	Exploring the Internet	technology: <u>Technology</u>
	language	Watch Tron	computing at Bletchley park	logic.ly/demo	of Things	<u>- BBC News</u>
Assessment	Soment One 60 mark, 1 hour assessment focusing on all topics up to this point including year 9 and 10 split into component 1 and component 2					
Focus	One full mock consisting	g of one paper on Comp	uter systems and a second pape	er on Algorithms and program	nming	
Name of	2.1 Algorithms		1.2 Memory and Storage	2.4 Boolean logic	1.3.1 Networks and	1.6 Ethical, Legal,
Knowledge	2.2 Programming		1.2 Number representation		topologies	Cultural and
Organiser	Fundamentals		1.2 Units of storage and		1.3.2 Wired and	Environmental Impacts
	2.3 Producing Robust		compression		wireless networks,	of digital technology
	Programs		1.2 Images, Text and Sounds		Protocols and Layers	
					1.4 Network Security	

	Term 3
Unit Title	General revision
Approximate Number of Lessons	9
Curriculum Content	Students will recap all topics.
Note: Where appropriate,	
lessons will also include	
programming tasks	
Links to prior learning	All topics
Cultural Capital Opportunities	Visit Computing history centre in Cambridge or the National museum of computing at Bletchley park
Assessment Focus	Component 1 final exam
	Component 2 final exam
Name of Knowledge Organiser	All component 1 and component 2 knowledge organisers

1.2 Units of Storage and Compression

Knowledge Organiser

Bit

Byte

Key learning

Units

- Bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte, petabyte
- How data needs to be converted into a binary format to be processed by a computer

Compression

- Need for compression
- **Types of compression:**
 - Lossy
 - Lossless

Why comp

Compu transis

Each transistor can only be on or off

This can be used to represent 1 or 0

iters use binary	
ers consist of many	20 1
ors	-contes

Lossless

- Reversible compression
- No data is lost
- Can be used on text
- Cannot be compressed as much as lossy

Lossy

- Permanent compression
- Some less inmportant data will be lost
- Cannot be used on text
- Can be compressed more than lossless

Key terms The smallest unit of data storage consisting of a single 1 or 0. This can be represented by a single transistor. Nibble A group of four bits (half a byte). A group of 8 bits. Reducing the file size to make it faster to send Compression

Lossy	A method of compressing a file by permanently removing some data.
Lossless	A method of compressing a file keeping all of the data.

and take up less storage space.

Bit	 Smallest unit of storage made of a sinlge 1 or 0
Nibble	• A group of 4 bits
Byte	• A group of 8 bits
Kilobyte	• 1 000 Bytes or 8 000 bits
Megabyte	• 1 000 Kilobytes or 1 000 000 Bytes
Gigabyte	 1 000 Megabytes or 1 000 000 Kilobytes
Terabyte	 1 000 Gigabytes or 1 000 000 Megabytes
Petabyte	 1 000 Terabytes or 1 000 000 Terabytes

Lossy compression

Lossless compression

Some pixels have been removed in this image.

1.3.1 Networks and topologies Knowledge

Organiser

Key learning

- **Types of networks:**
 - LAN (Local Area Network)
 - WAN (Wide Area Network)
- Factors that affect the performance of networks
- The different roles of computers in a client-server and a peer-to-peer network
- The hardware needed to connect stand-alone computers into a Local Area Network:
 - Wireless access points
 - **Routers/Switches**
 - NIC (Network Interface Controller/Card)
 - **Transmission media**
- The internet as a worldwide collection of computer networks:
 - DNS (Domain Name Server)
 - Hosting
 - The cloud
 - Web servers and clients
- Network topologies (Star and mesh)

	Key terms
Network	2 or more computers connected together so they can communicate.
LAN	A connection of computers over a small distance, usually less than a mile.
WAN	A connection of computers over a large distance, usually more than a mile.
Client	A computer that requests data and files from a server.
Server	A computer which stores files and settings centrally and sends them to clients.
Peer	A computer with equal privileges.
Internet	The connection of computers and networks creating a world wide network.
www	The files and data stored on the internet.
Cloud	Using servers over the internet to store and manage files and data.
Topology	This is a way of setting up a LAN

1.3.2 Wired and wireless networks, Protocols

and Layers Knowledge Organiser

Key learning

- Modes of connection:
 - Wired
 - Ethernet
 - Wireless
 - Wi-Fi
 - Bluetooth
- Encryption
- IP addressing and MAC addressing
- Standards
- Common protocols including:
 - TCP/IP (Transmission Control Protocol/Internet Protocol)
 - HTTP (Hyper Text Transfer Protocol)
 - HTTPS (Hyper Text Transfer Protocol Secure)
 - FTP (File Transfer Protocol)
 - POP (Post Office Protocol)
 - IMAP (Internet Message Access Protocol)
 - SMTP (Simple Mail Transfer Protocol)
- The concept of layers

Application layer	Responsible for encoding or decoding the message/ file.	
Transport layer	Breaks the message into small packets and gives each packet a number and total number of packets. This is used by recipient to put the message back together.	2.400 2.410 2.420 2.430 2.440 2.450 2.460 2.470 2.480 2.490 2.500 GHz GHz GHz GHz GHz GHz GHz GHz GHz GHz
Network layer	Adds the IP address of sender and recipient to each packet. This allows the packets to get to the right destination.	172 . 16 . 254 . 1 ★ ★ ★ ↓ ↓ 10101100.00010000.11111110.00000001
Data link layer	This converts the packets into the signals to send over the network, either electrical pulses, light pulses or radio waves.	8 bits 32 bits (4 bytes)

	Key terms
Ethernet	The protocol used to send data through wires over a network.
Wi-Fi	A radio technology that allows devices to communicate without wires.
Bluetooth	A short range radio technology allowing transfer of data between devices
Protocol	A set of rules which govern how devices communicate to each other.
Encryption	Applying a key to plain text to convert it to something people will not understand (ciphertext)
Standards	Common protocols followed by different manufacturers to allow cross communication
Layers	A method for separating the different jobs of communicating over a network so that everything does not need to be changed to change one part.
IP addressing	A series of numbers/ values to identify devices on a network. Used to send data between networks
MAC addressing	A series of hexadecimal values used to uniquely identify a device. Used to send data within a network

1.4 Network Security Knowledge Organiser

Key learning

- Forms of attack
 - Malware
 - Phishing
 - People as the 'weak point' in secure systems (social engineering)
 - Brute force attacks
 - Denial of service attacks
 - Data interception and theft
 - The concept of SQL injection
- Identifying and preventing vulnerabilities:
 - Penetration testing
 - Physical security
 - Anti-malware software
 - Firewalls
 - User access levels
 - Passwords
 - Encryption

	Key terms
Malware	Software designed to damage, delete, steal or copy files.
Phishing	Messages intended to trick people into thinking they are from a trusted person or company to get personal information.
Brute force	A type of attack where every possible combination is tried until the correct combination is entered.
Denial of Service	A type of attack where a single server is targeted by sending too much data for it to handle so that it crashes.
Data interception	A passive attack where the attacker listens in on the network to steal data being sent.
SQL injection	A type of attack that takes advantage of poorly written code to allow the attacker to add SQL to form fields to edit a database table.
Social engineering	Where an attacker will use deception to gain the trust of and manipulate individuals to gain information.
Firewall	A form of defence which blocks some of the ports and prevents data getting in that shouldn't. Can be hardware or software.
Penetration testing	This is used to test the security of a system to reduce the chance of attackers gaining entry.
User access levels	A method for preventing users from accessing data that they do not need access to.

Social engineering

1.5 Systems Software Knowledge Organiser

Key learning

- The purpose and functionality of systems software
- Operating systems:
 - File management
 - Resource management
 - User interface
 - Input/ output control
 - Task management
 - Security
- Utility system software:
 - Encryption software
 - Defragmentation
 - Data compression
 - Backing up

Key terms

Operating system	The piece of software which acts as the link between humans and the hardware.
Utility	This is software designed to help manage a computer. It will do one or two jobs really well.
Fragmentation	This is where gaps are created between files on a hard drive so it takes longer to retrieve what is needed.
Compression	File size is reduced either by grouping together data or removing dat. See 2.6.
Back up	A copy of files needed in case there is a failure of a computer system.

Jobs of an Operating System

File management Resource management User interface Input/ output control Task management Security

Defragmentation

1.6 Ethical, Legal, Cultural and Environmental

Impacts of technology Knowledge Organiser

Key learning

- How to investigate and discuss Computer Science technologies while considering:
 - Ethical issues
 - Legal issues
 - Cultural issues
 - Environmental issues
 - Privacy issues
- How key stakeholders are affected by technologies
- Environmental impact of Computer Science
- Cultural implications of Computer Science
- Open source vs proprietary software
- Legislation relevant to Computer Science:
 - The Data Protection Act 2018
 - Computer Misuse Act 1990
 - Copyright Designs and Patents Act 1988

Keep an eye on what is going on in technology. The Technology section on BBC news is a good place to start.

	Key terms
Ethics	These are the moral principles that dictate how a person behaves online and with technology.
Legislation	The laws that govern how computers and technology can be used.
Culture	How a person is brought up to behave when using technology and socialise using it.
Privacy	Being aware of what data should be shared online.
Open source	Software that can legally have the code edited to change how it behaves.
Proprietary software	Software where the code cannot be edited.
Stakeholder	A person or organisation who has an interest in the technology.

1.1 CPU architecture, CPU performance and Embedded systems Knowledge Organiser

Key learning

- The purpose of the CPU
- Von Neumann architecture:
 - MAR (Memory Address Register)
 - MDR (Memory Data Register)
 - Program Counter
 - Accumulator
- Common CPU components and their function:
 - ALU (Arithmetic Logic Unit)
 - CU (Control Unit)
 - Cache
- The role of the fetch and execute cycle
- How common characteristics of CPUs affect their performance:
 - clock speed
 - cache size
 - number of cores
- Embedded systems:
 - purpose of embedded systems
 - examples of embedded systems

	Key terms
СРU	The component responsible for executing instructions and processing data
Von Neumann	A type of design for a CPU
Register	A small data store on a CPU for a single piece of data (PC, MAR, MDR, ACC)
С	The Control Unit is responsible for directing how to respond to instructions
ALU	The Arithmetic Logic Unit carries out the mathematical and logical operations
Fetch-execute cycle	The process of a CPU carrying out instructions stored in memory
Clock speed	The number of instructions processed per second
Cache	Fast memory, close to the CPU which stores frequently used instructions
Cores	Individual, sub processors on a CPU. Allows for multiple instructions to be executed at the same time.
Embedded system	A computer with a dedicated function built into an appliance.

Examples of Embedded Systems

1.2 Memory and Storage Knowledge

Organiser

Key learning

- 1.2.1 Primary Storage (Memory)
- The difference between RAM and ROM
- The purpose of ROM in a computer system
- The purpose of RAM in a computer system
- The need for virtual memory
- 1.2.2 Secondary Storage
- The need for secondary storage
- Data capacity and calculation of data capacity requirements
- Common types of storage:
 - Optical
 - Magnetic
 - Solid state
- Characteristics and suitable uses of storage devices:
 - Capacity
 - Speed
 - Portability
 - Durability
 - Reliability
 - Cost

	Key terms
Primary Storage (Memory)	A component which stores data and instructions for use by the CPU.
Secondary Storage	A component which stores files and data long term.
RAM	The computers working memory. It stores instructions and data whilst programs are running. This is volatile memory.
ROM	This is Read Only Memory normally used to store computer start-up instructions.
Virtual memory	A reserved part of the hard drive used like RAM.
Capacity	The amount of space available on a memory or storage device.
Magnetic	Data is stored using magnetic fields to represent 1s and 0s
Optical	Data is read using a laser to detect pits and falls on a CD/ DVD/ Blu-ray disc.
Solid state	Data is stored using electrical circuits with no moving parts.
Volatile	This is memory that will lose its data when power is lost.
Non-volatile	This is memory that doesn't lose its data when power is lost.

Secondary

storage

Common misconception:

Secondary storage is only used as a back up store or extra storage

Primary

Storage

(memory)

RAM (Volatile)	ROM (Non volatile)	- Virtual memory	HDD	SSD	CD	DVD
	Capacity	Speed	Portability	Durability	Reliability	Cost
Magnetic	High	Mid	Mid	Mid	Mid	Low
Optical	Low	Low	High	Mid	Mid	Mid
Solid state	Mid	High	High	High	High	High

Storage

1.2 Number Representation Knowledge

Organiser

Key learning

Numbers

- How to convert positive denary whole numbers (0–255) into 8 bit binary numbers and vice versa
- How to add two 8 bit binary integers and explain overflow errors which may occur
- **Binary shifts**
- How to convert positive denary whole numbers (0–255) into 2 digit hexadecimal numbers and vice versa
- How to convert from binary to hexadecimal equivalents and vice versa

Rules

	Key terms
Bit	The smallest unit of data storage consisting of a single 1 or 0. This can be represented by a single transistor.
Nibble	A group of four bits (half a byte).
Byte	A group of 8 bits.
Binary	A base 2 system computers understand due to being made of transistors that can either be on or off.
Hexadecimal	A base 16 system used by humans to help remember and read binary code. Each binary nibble links directly to 1 hexadecimal digit.
Most significant bit	The left most digit of a binary number which has the highest value
Overflow error	When addition or left shifts lead to more than the original number of bits

Number conversions (Denary > Binary > Hex)

Binary to denary (01001101)

- Place the binary numbers under the binary place values starting from right to left
- Add together the headings where there is a 1 underneath
- E.g. 64+8+4+1 =**77**

Denary to binary (56)

128	64	32	16	8	4	2	1
0	1	0	0	1	1	0	1

- Work from the left and attempt to subtract the heading from your number
- If you can do it without getting a negative number then put a 1 under the heading and use the answer in the next column
- If you can't put a 0 un the heading and move the next column

der	128	64	32	16	8	4	2	1
e to	0	0	1	1	1	0	0	0

10

11

12

13

14

15

1

1

1

Α В

С

D

Е

F

2

2

0

4

4

1

8

8

1

Binary to hexadecimal (01001101)

- Split the **Byte** in half, this time use the top place values to convert each half (nibble) into denary
 - If the number is more than 9 use the letters A to F

Binary shifts

Left shift

- Each left shift will add one 0 to the right hand side of the binary number
- Each shift doubles the denary equivalent of the binary number
- If the number exceeds maximum number of bits then the left digit is lost this will reduce the accuracy of the number

Right shift

- Each right shift removes the right hand digit from the binary number
- Each shift will divide the denary equivalent of the number by 2
- If 1s are removed then the accuracy of the number is reduced

instead

- E.G. the left would be 4, the right would be 8 + 4 + 1 = 13
- 13 = D → Final answer = 4D
- Hexadecimal to Binary (F5)
 - Use the top headings to convert each digit of the hexadecimal number to **binary**

8

128

0

Make sure you keep them on the correct side (left to left and right to right)

4

64

1

2

32

0

1

16

0

F=15

8	4	2	1	8	4	2	1
128	64	32	16	8	4	2	1
1	1	1	1	0	1	0	1

1.2 Images, Text and Sounds Knowledge

Organiser

Key learning

Characters

- The use of binary codes to represent characters
- The term 'character-set'
- The relationship between the number of bits per character in a character set and the number of characters which can be represented (for example ASCII, extended ASCII and Unicode)

Images

- How an image is represented as a series of pixels represented in binary
- Metadata included in the file
- The effect of colour depth and resolution on the size of an image file

Sound

- How sound can be sampled and stored in digital form
- How sampling intervals and other factors affect the size of a sound file and the quality of its playback:
- Sample size
- Bit rate
- Sampling frequency

Text		
	Number	Letter
• Each character is given	^a 65	A
This is converted into hinary	66	В
 Characters will always be i 	n 67	С
order, a, b, c, etc.	68	D
A nonular character set is AS	CII which uses 8 hits p	or character

- A popular character set is **ASCII** which uses 8 bits per character
- ASCII can only store the Latin alphabet due to the **256** character limit
- Unicode is a character set which uses 16 or 32 bits per character
- Unicode includes ASCII as its first 256 characters
- **Unicode** then allows all other alphabets to be included, including emojis

Key terms The smallest element of an image Pixel (picture element). The number of pixels in an image or Resolution defined area. Number of bits used to represent a pixel. This affects the number of colours which Colour depth can be represented. Data about a file such as date, file type, Meta data author, resolution, bit depth, etc. The range of symbols a computer Character Set understands. A character set using 8 bits per character ASCII storing the Latin alphabet. A character set using 16 or 32 bits allowing other languages to also be Unicode represented. The result of a sound being sampled and **Digital sound** stored on a computer in binary. The original sound before it is sampled Analogue sound by a computer. Measuring the height/ amplitude of a Sample sound wave at a specific point in time. . .

Sample rate	The number of samples recorded every second.
Bit depth/ sample size	The number of bits used to represent each sample.
Bit rate	The number of bits being processed every second. Worked out by multiplying the sample frequency by the sample size.

Images

- Each image is made up of **pixels**
- The pixel is stored as a **binary number** which represents the colour of the pixel

Sounds

À

converted into digital sounds (binary)

- A sample is taken at regular intervals (sample frequency)
- A **sample** is a measurement of the amplitude at a set point in time
- Each **sample** is stored as a binary number
- The accuracy of each sample is determined by the sample size
- The accuracy of the wave is determined by the sample frequency
- Bit rate can be worked out by multiplying the **sample frequency** by the **sample size**
- File size can be worked out by multiplying the **bit rate** by the **length of the sound** in seconds

- colour of the pixer
- Each colour has a **unique** binary number
- The number of colours is determined by the **colour depth** The number of pixels in an image is known as its **resolution** which can be worked out by multiplying the **width** and **height**
- Each image will also store metadata such as file type, date taken, author, location, etc.
- The **file size** of an image can be worked out by multiplying the **resolution** by the **colour depth**.

2.1 Algorithms Knowledge Organiser

Key learning

- Computational thinking:
 - Abstraction
 - Decomposition
 - Algorithmic thinking
- Standard searching algorithms:
 - Binary search
 - Linear search
- Standard sorting algorithms:
 - Bubble sort
 - Merge sort
 - Insertion sort
- How to produce algorithms using:
 - Pseudocode
 - Using flow diagrams
 - Interpret, correct or complete algorithms

	Key terms
Algorithm	A set of instructions to complete a task.
Abstraction	Removing unnecessary detail from a problem to make it easier to solve.
Decomposition	Breaking down a problem into smaller parts to make it easier to solve.
Algorithmic thinking	Identifying the steps needed to solve a problem.
Searching	An algorithm designed to find a piece of data in a list.
Sorting	An algorithm designed to sort a list into alphabetical or numerical order.
Pseudocode	A form of code which does not link to any programming language. It is used for planning.
Flow chart	A way of planning an algorithm using shapes to represent types of instruction.

Insertion sort

Bubble sort

2.2 Programming Fundamentals Knowledge

Organiser

Key learning

- The use of variables, constants, operators, inputs, outputs and assignments
- The use of the three basic programming constructs used to control the flow of a program:
 - Sequence
 - Selection
 - Iteration (count and condition controlled loops)
 - The use of basic string manipulation
- The use of basic file handling operations:
 - Open
 - Read
 - Write
 - Close
- The use of records to store data
- The use of SQL to search for data: SELECT, FROM, WHERE
- The use of arrays (or equivalent) when solving problems, including both one and two dimensional arrays
- How to use sub programs (functions and procedures) to produce structured code
- Random number generation
- The use of data types:
 - Integer
 - Real
 - Boolean
 - Character and string
 - Casting
- The common arithmetic operators: +, -, /, *, ^ MOD, DIV
- The common Boolean operators: AND, OR, NOT
- The common comparison operators: ==, !=, <, <=, >, >=

	Key terms
Variable	A named location in memory storing a single piece of data that can change.
Constant	A named location in memory storing a single piece of data that cannot change.
Array	A named location in memory that can hold multiple pieces of data of the same type.
SQL	A language used to retrieve and manipulate data in a database.
Sub programs	A named section of code which completes a sub task that can be reused.
Function	A type of sub program that returns a value.
Procedure	A type of sub program that doesn't return a value.
Comparison operator	An operator used to compare two values. Commonly used in an if statement.
Arithmetic operator	An operator used to carry out a mathematical function such as addition or subtraction.
Casting	Converting one data type to another
Concatenation	Joining two or more stings together

Data Types

Array Length = 9

SQL example

SELECT Syntax

SELECT column1, column2, ...
FROM table_name;

Here, column1, column2, ... are the field names of the table you want to select data from. If you want to select all the fields available in the table, use the following syntax:

SELECT * FROM table_name;

2.3 Producing Robust Programs Knowledge

Organiser

Key learning

- Defensive design considerations:
 - Anticipating misuse
 - Authentication
- Input sanitisation/validation
- Maintainability:
 - Comments
 - Indentation
 - Use of functions
 - Sensible variable names
- The purpose of testing
- Types of testing:
 - Iterative
 - Final/terminal
- How to identify syntax and logic errors
- Selecting and using suitable test data
- Refining algorithms

5 5CHOOL. 3 50ME	OH, DEAR - DID HE BREAK SOMETHING?	DID YOU REALLY NAME YOUR SON Robert'); DROP	WELL, WE'VE LOST THIS YEAR'S STUDENT RECORDS. I HOPE YOU'RE HAPPY.
ROUBLE.		TABLE Students; ?	AND I HOPE YOU'VE LEARNED
	$\wedge \Pi$	WE CALL HIM.	DATABASE INPUTS

BUILDING MAINTAINABLE SOFTWARE FOR SUSTAINABLE BUSINESS GROWTH-ROB VAN DER LEER & ZELJKO BEST PRACTICES AG

A dependency

and topping points which can be significant

ignificant hotspolo for , and become

new code.... HOT is new code....

Input validation

This field cannot be empty

How did this happen? 12 happened one line of code at a time > Nev davs needed FARS Sustemmore mplex and LARGE existing Work-an (hacks, cut and pasts) 1) Sustainable business needs maintainable code 2) Code must be small, simple and flexible 3) Maintainability is measurable Can nousure: \odot · Size. • complexity • complexity

3 principles for less experienced dev's is not a s - simple guidelinos high lavel architectue - from the start - the better the system complies the better Unit: method, proc. Function The 8 guidelines Module: Gla, class, script Component: package solution, naneoppue, I. Max length of unit is 15 lines Small codebase has System : whole thing · small development team 2. Max number of branch points per unit is 4 e.g. if, while · small maintenance team · Jewer stakeholders · less functionality 3. Moxnumber of parameters is Talk by: To Max duplication is 7 lines 20 robvanderleek Limit the size of modules to and Željko Obrenović Do 400 lines of code. of G Software Improvement Group Have 6-12 components of 6. Equal size @sig.eu Don't create cyclic dependencies @ sig.eu. petiveen components Keep code base below 200,000 8 Keep code bas Maintainable code

2.4 Boolean Logic Knowledge Organiser

Key learning

- Why data is represented in computer systems in binary form
- Simple logic diagrams using the operations AND, OR and NOT
- Truth tables
- Combining Boolean operators using AND, OR and NOT to two levels
- Boolean notation
- Applying logical operators in appropriate truth tables to solve problems

Key terms		
Binary	A series of 1s and 0s used for data and instructions represented by switches/ transistors.	
Boolean logic	A form of logic centred around operations between combinations of 1s ad 0s.	
AND (Conjunction)	A Boolean operation where both inputs must be a 1 for the output to be 1.	
OR (Disjunction)	A Boolean operation where at least one input needs to be a 1 for the output to be 1.	
NOT (Negation)	A Boolean operation where the output is the inverse of the input.	
Truth table	A table which can be used to work out the output for different combinations of inputs being used with Boolean operators.	
Logic diagram	A way to visualise how data passes through different gates.	

Output

Creating logical expressions

• P = (A AND B) OR NOT C

• P = (A / B) V ¬ C

2.5 Programming languages and IDEs

Knowledge Organiser

Key learning

- Characteristics and purpose of different levels of programming language, including low level languages
- The purpose of translators
- The characteristics of a compiler and an interpreter
- Common tools and facilities available in an integrated development environment (IDE):
 - Editors

- Error diagnostics
- Run-time environment
- Translators

High level language	Low level language
Close to English	Close to the native language of the computer
Faster to write	Written in Binary

	Key terms
High level language	A programming language which closely resembles English, for example Python.
Low level language	A programming language in Binary designed for the CPU to understand.
Compiler	A translator that converts high level code into low level code in one go.
Interpreter	A translator that converts high level code to low level code line by line.
Editor	A program designed to make writing code easier usually including a range of tools such as colour coding.
Run-time environment	A program which executes code written and allows it to be checked for errors.
IDE	Integrated Development Environment is software that normally combines editors, debuggers, and translators.

Compiler	Interpreter
Takes entire program as	Takes a single instruction at a
input	time as input
Creates an intermediate	Doesn't generate object
object code	code
Code is compiled before	Translation and execution
being executed	take place at the same time
Faster to run once	Slower to run
compiled	
Displays all errors at the	Displays each error as it finds
end of compilation	it
Error detection is more	Error detection is easier
difficult	

Can run on any machine as long as suitable translator is used	Can only run on one device
No knowledge of hardware is needed	Linked to specific hardware
Examples include Python, C++, Java and Visual Basic	Also known as machine code

