
Year 10 Curriculum Overview Computer Science 2023-24

 Term 1

Unit Title 2.1 Computational thinking 2.2 Programming techniques 2.2 Programming techniques

Approximate Number of Lessons 6 10 12

Curriculum Content

Understand the computational
constructs

Understand programming syntax

Understand the facilities of languages
and translators

Understand how to break problems
down

Understand syntax for logical
programming

Understand syntax for iteration

Understand how nesting can be used

Understand different types of error

Understand how to make code more
maintainable

Understanding string manipulation
techniques

Links to prior learning Links to programming in Year 8/9

Computational thinking methods and
constructs

Previous programming techniques and
Computational thinking

Cultural Capital Opportunities Links to other uses of problem solving
including real world problems

Bebras challenge
Robotics trip- adastral park
How tech works

Links to real world programming
How tech works
Solving real world problems

Assessment Focus One 50-mark, 1 hour assessment each half term focusing on all topics up to this point

Name of Knowledge Organiser: These can
be found on Brightspace

2.1 Algorithms

2.1 Algorithms
2.2 Programming Fundamentals

2.1 Algorithms
2.2 Programming Fundamentals

Year 10 Curriculum Overview Computer Science 2023-24

 Term 2

Unit Title 2.2 Programming techniques 2.2 Programming techniques 2.2 Programming techniques

Approximate Number of Lessons 12 4 8

Curriculum Content

Understand different data structures
and why they are needed

Understand how to access files and
databases

Understand defensive design
considerations

Understand different types of error

Understand how to test solutions
thoroughly

Using skills learnt to solve a programming
project

Links to prior learning Previous programming techniques and
Computational thinking

Previous programming techniques and
Computational thinking

Previous programming techniques and
Computational thinking

Cultural Capital Opportunities Links to real world programming
How tech works
Solving real world problems

Links to real world programming
How tech works
Solving real world problems

Links to real world programming
How tech works
Solving real world problems

Assessment Focus One 50 mark, 1 hour assessment each half term focusing on all topics up to this point

Name of Knowledge Organiser: These can
be found on Brightspace

2.1 Algorithms
2.2 Programming Fundamentals

2.1 Algorithms
2.2 Programming Fundamentals
2.3 Producing Robust Programs

Year 10 Curriculum Overview Computer Science 2023-24

 Term 3

Unit Title Boolean Logic Standard algorithms Translators and the
IDE

Systems architecture Memory and storage

Approximate Number of
Lessons

6 6 2 5 10

Curriculum Content

Note: Where appropriate,
lessons will also include
programming tasks

Students will study logic
circuits and how data flows
through them following the
laws of Boolean logic.

Students will study the
standard search and
sort algorithms that are
used widely in
programs. This will
include how to trace
them and write them.

Students will recap
how an IDE can help
write and debug
programs and they
will also learn about
different types of
programming
languages.

Students will learn
about the CPU and how
it is used with other
components of a
computer.

Students will learn how data is
stored by computers. This will
include the devices data is stored
on and how each type of data can
be represented in binary.

Links to prior learning Boolean operators

Programming
techniques

Programming
techniques

Programming
techniques

Systems architecture
Programs
Boolean logic
Basic numeracy skills (Maths)

Cultural Capital
Opportunities

Visit www.georgeboole.com
Visit Computing history centre
in Cambridge or the National
museum of computing at
Bletchley park

Play a card game
(sorting the cards in
your hand)

Visit Computing
history centre in
Cambridge
Watch/ read Hidden
figures

Visit Computing history
centre in Cambridge or
the National museum of
computing at Bletchley
park
Watch Tron

Watch The Emoji movie, The
Martian, Tron, Calculating Ada
Visit Computing history centre in
Cambridge or the National
museum of computing at
Bletchley park

Assessment Focus One 50 mark, 1 hour assessment each half term focusing on all topics up to this point

Name of Knowledge
Organiser: These can be
found on Brightspace

2.4 Boolean Logic 2.1 Algorithms
2.2 Programming
Fundamentals
2.3 Producing Robust
Programs

2.5 Programming
languages and
Integrated
Development
Environments (IDE)

1.1 CPU architecture,
CPU performance and
Embedded systems

1.2 Memory and Storage
1.2 Number representation
1.2 Units of storage and
compression
1.2 Images, Text and Sounds

http://www.georgeboole.com/

2.1 Algorithms Knowledge Organiser

Key terms
Algorithm A set of instructions to complete a task.

Abstraction
Removing unnecessary detail from a
problem to make it easier to solve.

Decomposition
Breaking down a problem into smaller
parts to make it easier to solve.

Algorithmic
thinking

Identifying the steps needed to solve a
problem.

Searching
An algorithm designed to find a piece
of data in a list.

Sorting
An algorithm designed to sort a list into
alphabetical or numerical order.

Pseudocode
A form of code which does not link to
any programming language. It is used
for planning.

Flow chart
A way of planning an algorithm using
shapes to represent types of
instruction.

Key learning
• Computational thinking:

• Abstraction
• Decomposition
• Algorithmic thinking

• Standard searching algorithms:
• Binary search
• Linear search

• Standard sorting algorithms:
• Bubble sort
• Merge sort
• Insertion sort

• How to produce algorithms using:
• Pseudocode
• Using flow diagrams
• Interpret, correct or complete algorithms

Insertion sort Bubble sort

Merge sort

Pseudocode

• Use naming conventions

• Use indentation

• Make sure function
names are clear

• Comment code

2.2 Programming Fundamentals Knowledge

Organiser

Key terms

Variable
A named location in memory storing a
single piece of data that can change.

Constant
A named location in memory storing a
single piece of data that cannot change.

Array
A named location in memory that can hold
multiple pieces of data of the same type.

SQL
A language used to retrieve and
manipulate data in a database.

Sub programs
A named section of code which completes
a sub task that can be reused.

Function A type of sub program that returns a value.

Procedure
A type of sub program that doesn’t return
a value.

Comparison
operator

An operator used to compare two values.
Commonly used in an if statement.

Arithmetic
operator

An operator used to carry out a
mathematical function such as addition or
subtraction.

Casting Converting one data type to another

Concatenation Joining two or more stings together

Key learning
• The use of variables, constants, operators, inputs, outputs

and assignments
• The use of the three basic programming constructs used

to control the flow of a program:
• Sequence
• Selection
• Iteration (count and condition controlled loops)

• The use of basic string manipulation
• The use of basic file handling operations:

• Open
• Read
• Write
• Close

• The use of records to store data
• The use of SQL to search for data: SELECT, FROM, WHERE
• The use of arrays (or equivalent) when solving problems,

including both one and two dimensional arrays
• How to use sub programs (functions and procedures) to

produce structured code
• Random number generation
• The use of data types:

• Integer
• Real
• Boolean
• Character and string
• Casting

• The common arithmetic operators: +, -, /, *, ^ MOD, DIV
• The common Boolean operators: AND, OR, NOT
• The common comparison operators: ==, !=, <, <=, >, >=

Data Types

Array

SQL example Programming Constructs

2.3 Producing Robust Programs Knowledge

Organiser

Key terms

Input sanitation
Removing unwanted characters, such
as spaces or punctuation, from inputs.

Input validation
Checking that an input is reasonable,
for example age needs to be > 0.

Contingencies
Planning for when something doesn’t
work as expected.

Authentication
Making sure user have to sign in to
access and change data.

Normal test data Data that should be accepted.

Boundary test
data

Data that should be accepted but is
borderline.

Erroneous test
data

Data that should not be accepted.

Syntax error
An error that causes a program to stop
running due to the code not following
the rules of the language.

Logic error
An error where the program can still
run but will not give the expected
output.

Runtime error
An error where the program will stop
running due to the program not being
able to carry out the instruction.

Key learning
• Defensive design considerations:

• Anticipating misuse
• Authentication

• Input sanitisation/validation
• Maintainability:

• Comments
• Indentation
• Use of functions
• Sensible variable names

• The purpose of testing
• Types of testing:

• Iterative
• Final/terminal

• How to identify syntax and logic errors
• Selecting and using suitable test data
• Refining algorithms

Final testing

Iterative testing

Input validation

Authentication

Maintainable code

2.4 Boolean Logic Knowledge Organiser

Key terms

Binary
A series of 1s and 0s used for data
and instructions represented by
switches/ transistors.

Boolean logic
A form of logic centred around
operations between combinations of
1s ad 0s.

AND (Conjunction)
A Boolean operation where both
inputs must be a 1 for the output to
be 1.

OR (Disjunction)
A Boolean operation where at least
one input needs to be a 1 for the
output to be 1.

NOT (Negation)
A Boolean operation where the
output is the inverse of the input.

Truth table

A table which can be used to work
out the output for different
combinations of inputs being used
with Boolean operators.

Logic diagram
A way to visualise how data passes
through different gates.

Key learning
• Why data is represented in computer systems in binary

form
• Simple logic diagrams using the operations AND, OR and

NOT
• Truth tables
• Combining Boolean operators using AND, OR and NOT to

two levels
• Boolean notation
• Applying logical operators in appropriate truth tables to

solve problems

2.5 Programming languages and IDEs

Knowledge Organiser

Key terms
High level
language

A programming language which closely
resembles English, for example Python.

Low level
language

A programming language in Binary
designed for the CPU to understand.

Compiler
A translator that converts high level
code into low level code in one go.

Interpreter
A translator that converts high level
code to low level code line by line.

Editor
A program designed to make writing
code easier usually including a range of
tools such as colour coding.

Run-time
environment

A program which executes code
written and allows it to be checked for
errors.

IDE
Integrated Development Environment
is software that normally combines
editors, debuggers, and translators.

Key learning
• Characteristics and purpose of different levels of

programming language, including low level languages
• The purpose of translators
• The characteristics of a compiler and an interpreter
• Common tools and facilities available in an integrated

development environment (IDE):
• Editors
• Error diagnostics
• Run-time environment
• Translators

High level language Low level language

Close to English Close to the native language of

the computer

Faster to write Written in Binary

Can run on any machine as

long as suitable translator is

used

Can only run on one device

No knowledge of hardware is

needed

Linked to specific hardware

Examples include Python, C++,

Java and Visual Basic

Also known as machine code

Compiler Interpreter

Takes entire program as

input

Takes a single instruction at a

time as input

Creates an intermediate

object code

Doesn’t generate object

code

Code is compiled before

being executed

Translation and execution

take place at the same time

Faster to run once

compiled

Slower to run

Displays all errors at the

end of compilation

Displays each error as it finds

it

Error detection is more

difficult

Error detection is easier

1.1 CPU architecture, CPU performance and

Embedded systems Knowledge Organiser

Key terms

CPU
The component responsible for executing
instructions and processing data

Von Neumann A type of design for a CPU

Register
A small data store on a CPU for a single
piece of data (PC, MAR, MDR, ACC)

CU
The Control Unit is responsible for
directing how to respond to instructions

ALU
The Arithmetic Logic Unit carries out the
mathematical and logical operations

Fetch-execute
cycle

The process of a CPU carrying out
instructions stored in memory

Clock speed
The number of instructions processed per
second

Cache
Fast memory, close to the CPU which
stores frequently used instructions

Cores
Individual, sub processors on a CPU.
Allows for multiple instructions to be
executed at the same time.

Embedded
system

A computer with a dedicated function
built into an appliance.

Key learning
• The purpose of the CPU
• Von Neumann architecture:

• MAR (Memory Address Register)
• MDR (Memory Data Register)
• Program Counter
• Accumulator

• Common CPU components and their function:
• ALU (Arithmetic Logic Unit)
• CU (Control Unit)
• Cache

• The role of the fetch and execute cycle
• How common characteristics of CPUs affect their

performance:
• clock speed
• cache size
• number of cores

• Embedded systems:
• purpose of embedded systems
• examples of embedded systems

Cores

1.2 Memory and Storage Knowledge

Organiser

Key terms
Primary Storage
(Memory)

A component which stores data and
instructions for use by the CPU.

Secondary
Storage

A component which stores files and data
long term.

RAM
The computers working memory. It stores
instructions and data whilst programs are
running. This is volatile memory.

ROM
This is Read Only Memory normally used
to store computer start-up instructions.

Virtual memory
A reserved part of the hard drive used like
RAM.

Capacity
The amount of space available on a
memory or storage device.

Magnetic
Data is stored using magnetic fields to
represent 1s and 0s

Optical
Data is read using a laser to detect pits
and falls on a CD/ DVD/ Blu-ray disc.

Solid state
Data is stored using electrical circuits with
no moving parts.

Volatile
This is memory that will lose its data when
power is lost.

Non-volatile
This is memory that doesn’t lose its data
when power is lost.

Key learning
1.2.1 Primary Storage (Memory)
• The difference between RAM and ROM
• The purpose of ROM in a computer system
• The purpose of RAM in a computer system
• The need for virtual memory
1.2.2 Secondary Storage
• The need for secondary storage
• Data capacity and calculation of data capacity

requirements
• Common types of storage:

• Optical
• Magnetic
• Solid state

• Characteristics and suitable uses of storage devices:
• Capacity
• Speed
• Portability
• Durability
• Reliability
• Cost

Capacity Speed Portability Durability Reliability Cost

Magnetic High Mid Mid Mid Mid Low

Optical Low Low High Mid Mid Mid

Solid state Mid High High High High High

Common misconception:

Secondary storage is only

used as a back up store or

extra storage

1.2 Number Representation Knowledge

Organiser

Key terms

Bit
The smallest unit of data storage
consisting of a single 1 or 0. This can be
represented by a single transistor.

Nibble A group of four bits (half a byte).

Byte A group of 8 bits.

Binary
A base 2 system computers understand
due to being made of transistors that
can either be on or off.

Hexadecimal

A base 16 system used by humans to
help remember and read binary code.
Each binary nibble links directly to 1
hexadecimal digit.

Most significant
bit

The left most digit of a binary number
which has the highest value

Overflow error
When addition or left shifts lead to
more than the original number of bits

Key learning

Numbers
• How to convert positive denary whole numbers (0–255)

into 8 bit binary numbers and vice versa
• How to add two 8 bit binary integers and explain

overflow errors which may occur
• Binary shifts
• How to convert positive denary whole numbers (0–255)

into 2 digit hexadecimal numbers and vice versa
• How to convert from binary to hexadecimal equivalents

and vice versa

Number conversions (Denary > Binary > Hex)

Binary to denary (01001101)

• Place the binary numbers under the binary place values starting

from right to left

• Add together the headings where there is a 1 underneath

• E.g. 64+8+4+1 =77

Denary to binary (56)

• Work from the left and attempt to subtract the heading from your

number

• If you can do it without getting a negative number then put a 1 under

the heading and use the answer in the next column

• If you can’t put a 0 under

the heading and move to

the next column

Binary to hexadecimal (01001101)

• Split the Byte in half, this time use the top place values

to convert each half (nibble) into denary

• If the number is more than 9 use the letters A to F

instead

E.G. the left would be 4, the right would be 8 + 4 + 1= 13

13 = D ➔ Final answer = 4D

Hexadecimal to Binary (F5)

• Use the top headings to convert each digit of the hexadecimal

number to binary

• Make sure you keep them on the correct side (left to left and right to

right)

 F=15

Binary shifts

Left shift

• Each left shift will add one 0 to the right hand side of the binary

number

• Each shift doubles the denary equivalent of the binary number

• If the number exceeds maximum number of bits then the left digit

is lost this will reduce the accuracy of the number

Right shift

• Each right shift removes the right hand digit from the binary number

• Each shift will divide the denary equivalent of the number by 2

• If 1s are removed then the accuracy of the number is reduced

1.2 Units of Storage and Compression

Knowledge Organiser

Key terms

Bit
The smallest unit of data storage consisting of
a single 1 or 0. This can be represented by a
single transistor.

Nibble A group of four bits (half a byte).

Byte A group of 8 bits.

Compression
Reducing the file size to make it faster to send
and take up less storage space.

Lossy
A method of compressing a file by
permanently removing some data.

Lossless
A method of compressing a file keeping all of
the data.

Key learning
Units
• Bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte,

petabyte
• How data needs to be converted into a binary format to

be processed by a computer

Compression
• Need for compression
• Types of compression:

• Lossy
• Lossless

Why computers use binary

• Computers consist of many

transistors

• Each transistor can only be on or off

• This can be used to represent 1 or 0

Lossless compression Lossy compression

Some pixels have been removed in

this image.

1.2 Images, Text and Sounds Knowledge

Organiser

Key terms

Pixel
The smallest element of an image
(picture element).

Resolution
The number of pixels in an image or
defined area.

Colour depth
Number of bits used to represent a pixel.
This affects the number of colours which
can be represented.

Meta data
Data about a file such as date, file type,
author, resolution, bit depth, etc.

Character Set
The range of symbols a computer
understands.

ASCII
A character set using 8 bits per character
storing the Latin alphabet.

Unicode
A character set using 16 or 32 bits
allowing other languages to also be
represented.

Digital sound
The result of a sound being sampled and
stored on a computer in binary.

Analogue sound
The original sound before it is sampled
by a computer.

Sample
Measuring the height/ amplitude of a
sound wave at a specific point in time.

Sample rate
The number of samples recorded every
second.

Bit depth/
sample size

The number of bits used to represent
each sample.

Bit rate
The number of bits being processed
every second. Worked out by multiplying
the sample frequency by the sample size.

Key learning
Characters
• The use of binary codes to represent characters
• The term ‘character-set’
• The relationship between the number of bits per

character in a character set and the number of characters
which can be represented (for example ASCII, extended
ASCII and Unicode)

Images
• How an image is represented as a series of pixels

represented in binary
• Metadata included in the file
• The effect of colour depth and resolution on the size of an

image file
Sound
• How sound can be sampled and stored in digital form
• How sampling intervals and other factors affect the size of

a sound file and the quality of its playback:
• Sample size
• Bit rate
• Sampling frequency

Sounds

• Analogue sounds must be

converted into digital sounds

(binary)

• A sample is taken at regular

intervals (sample frequency)

• A sample is a measurement of

the amplitude at a set point in

time

• Each sample is stored as a binary number

• The accuracy of each sample is determined by the sample size

• The accuracy of the wave is determined by the sample frequency

• Bit rate can be worked out by multiplying the sample frequency by

the sample size

• File size can be worked out by multiplying the bit rate by the length

of the sound in seconds

Text

• Each character is given a

unique number

• This is converted into binary

• Characters will always be in

order, a, b, c, etc.

• A popular character set is ASCII which uses 8 bits per character

• ASCII can only store the Latin alphabet due to the 256 character limit

• Unicode is a character set which uses 16 or 32 bits per character

• Unicode includes ASCII as its first 256 characters

• Unicode then allows all other alphabets to be included, including

emojis

Images

• Each image is made up of pixels

• The pixel is stored as a binary

number which represents the

colour of the pixel

• Each colour has a unique binary

number

• The number of colours is

determined by the colour depth

• The number of pixels in an image is

known as its resolution which can

be worked out by multiplying the

width and height

• Each image will also store

metadata such as file type, date

taken, author, location, etc.

• The file size of an image can be worked out by multiplying the

resolution by the colour depth.

	Year 10 CS
	2.1 algorithms knowledge organiser
	2.2 programming fundamentals knowledge organiser
	2.3 producing robust programs knowledge organiser
	2.4 Boolean logic knowledge organiser
	2.5 Programming languages and IDEs Knowledge organiser
	1.1 CPU architecture, CPU performance and Embedded systems Knowledge Organiser
	1.2 Memory and Storage knowledge organiser
	1.2 Number representation knowledge organiser
	1.2 Units of storage and compression knowledge organiser
	1.2 Images, Text and Sounds knowledge organiser

